Date: Wed, 12 Sep 2012 15:46:32 -0400 (EDT) From: Roger Ruszkowski <flowertime01@wmconnect.com> Subject: [R-390] R390 Inspection _List

You are looking for this stuff. Roger Ruszkowski This paper is still not complete. Nothing in this work is original to Roger Ruszkowski. Iacknowledge that I copied and pasted every bit of it from others. Contributors include at least the following fellows. The contributions are not limited tothe following fellows. Additional names may be added at any time.

Acknowledgements appear in no special order. R-r90@mailman.qth.net

- A. Current State
- B. Modifications Installed
- C. Cosmetic Clean Up
- D. Hard Core RF Module Cleaning
- E. Cosmetic RF Module Cleaning
- F. Rebuild Inspection / Visual Inspection
- G. Reassemble The Receiver
- H. Mechanical Alignment
- I. Knobology Dynamic Testing Monthly Test
- J Adjust the IF gain R519
- K. Alternate Procedure To Set The IF Gain Control
- L IF Module Alignment
- M. To Stager Or Not To Stager
- N. To Stager Tune IF
- O. To Straight Tune IF
- P. Adjust Z503 AGC
- Q IF And Audio Module Tube Optimizing
- R. Adjust T208, C520, L503, and Zero BFO
- S 2nd Crystal Oscillator Alignment
- T 1st Crystal Oscillator Alignment
- U VFO Band Spread Test
- V VFO Band Spread Adjustment
- W. RF Alignment
- X RF Deck Tube Optimization
- Y. Receiver Sensitivity Test
- Z. Signal To Noise Test
- A. Current State
- ____ O1 Top cover should not be installed if rack mounted
- ____ 02 Bottom cover should not be installed if rack mounted
- ____ 03 RF deck cover should be installed
- ____ O4 Factory holes in left side to allow adjustment of mechanical filters
- ____ 05 A Check the VFO position you may not want to loosen some screws

- ____ 05 B Collins / Motorola VFO
- ___ 05 C Cosmos VFO
- ____ 06 IF output connector on back panel is present
- ____ 07 IF output cable is present
- ____ 08 All the knobs are present
- ____ 09 Any obvious broken parts
- ____ 10 Any missing parts
- ____ 11 Any leaking parts
- ____ 12 Any wire harness damage
- B. Modifications Installed
- ____ 01 Diode load hole in the front panel (not desired)
- ____ 02 Adjustment hole in the top dust cover for the meter adjustment.
- ____ 03 Micro dial on BFO
- ____ 04 Jumper from break-in on terminal board to ground
- ____ 05 A IF deck has no adjustments for mechanical filters
- ____ 05 B IF deck has trimmers only on top for mechanical filters
- ____ 05 C Chassis has no holes for under deck trimmer caps
- ____ 05 D Chassis has four added holes for under deck trimmer caps
- ____ 05 E Chassis has four manufactured holes for under deck trimmer caps
- ____ 06 A Ballast tube is original 3TF7
- ____ 06 B Ballast tube is 12 volt filament tube (12BY7 12.6 V.3 A)
- ____ 06 C Ballast tube is diode
- ____ 06 D Ballast tube is resistor
- ____ 06 E Ballast tube is removed with 12BA6 in BFO and VFO
- ____ 06 F Ballast tube is removed with 6.3 volt filaments for BFO and VFO
- ____ 07 A Solid state 26Z5's sockets unwired
- ____ 07 B Solid state 26Z5's sockets crimped over
- ____ 07 C Solid state 26Z5's diodes on top of sockets
- ____ 07 D Solid state 26Z5's no clue provided
- ____ 08 Spook cover on dial bezel
- ____ 09 Colored dial lights (red or blue)
- ____ 10 LED dial lamps
- ____ 11 EIA tube shields
- ____ 12 The selenium rectifier is replaced with bridge rectifier
- ____ 13 Replaced power filter caps
- ____ 14 Replaced AGC time constant caps
- 15 Langford AGC diode modifications
- ____ 16 Other SSB modifications
- ____ 17 A Line filter is still original
- ____ 17 B Line filter is GFI friendly
- ____ 17 C Line filter is missing
- ____ 18 R390A has a quality capacitor for C553
- $__$ 19 R390A black or brown beauties have been replaced in IF and RF decks
- ____ 20 A R390A power supply filter caps original style

- 20 B R390A power supply filter caps re-stuffed cans
- ____ 20 C R390A power supply filter caps re-stuffed other package
- ____ 20 D R390A power supply filter caps under deck
- ____ 21 A R390 power supply filter caps original style
- ____ 21 B R390 power supply filter caps re-stuffed cans
- ____ 21 C R390 power supply filter caps re-stuffed other package
- ____ 21 D R390 power supply filter caps replaced other
- ____ 22 A R390 Audio 1UF B+ filter caps original style
- ____ 22 B R390 Audio 1UF B+ filter caps re-stuffed
- ____ 22 C R390 Audio 1UF B+ filter caps replaced under deck
- ____ 23 Paper caps removed from audio module.
- ___ 24 R390A C604 0.01 300 WVDC 20% paper replaced with 0.022 400 $\rm V$
- ___ 25 R390A C605 0.01 300 WVDC 20% paper replaced with 0.022 400 V
- ____ 26 R390A C609 8uf 30 WVDC tantalum electrolytic replaced
- ____ 27 R390A 6626 MIL spec replacing the 0A2 commercial tube
- ____ 28 R390A R504 should have a value of 500 ohms.
- ____ 29 A Line meter is original type
- ____ 29 B Line meter is correct resistance but re-faced
- ____ 29 C Line meter is modified circuit and meter
- ____ 29 D Line meter does not have correct face
- ____ 30 A Carrier meter is original type
- ____ 30 B Carrier meter is correct resistance but re-faced
- ____ 30 C Carrier meter is modified circuit and meter
- ____ 30 D Carrier meter does not have correct face
- C. Cosmetic Clean Up
- ____ 01 Remove all of the knobs and lightly lube the set screws
- ____ 02 Pull all of the modules out of receiver
- ____ 03 Drop the front panel
- ____ 04 Rip it's gizzard out and scatter and toss the parts around
- ____ 05 Try but manage to not loose any of the parts
- ____ 06 Do not have any extra parts left over when finished
- ____ 07 Pull all the tube shields
- ____ 08 Pull all the tubes
- ____ 09 Remove the RF slug racks and springs
- ____ 10 Wipe each of the RF cores out with a damp Q-tips
- ____ 11 Wipe the slugs off, and eye-ball them
- ____ 12 R390A All of the RF slugs are the same
- ____ 13 R390A All of the six Variable IF slugs are the same
- ____ 14 R390 RF slugs type a
- ____ 15 R390 RF slugs type b
- ____ 16 R390 First IF slugs
- ____ 17 R390 Second IF slugs

- ____ 18 Remove the RF coil can assemblies
- ____ 19 Straighten the IF and RF can assemblies as needed
- ____ 20 Verify that the index washers were installed in the two big knobs
- ____ 21 Give the chassis a bath with soap and water let dry
- ____ 22 Wash the front panel with soap and water let dry
- ____ 23 Wash the modules with soap and water let dry
- ____ 24 Do not take apart the 6 camshafts and the antenna trimmer can.
- ____ 25 Do not oil the antenna trimmer insulating fiberwashers
- ____ 26 Do not saturate / soak / submerge the slugs
- ____ 27 Clean the slug rack rollers by working penetrating oil into rollers
- ____ 28 Keep lubing and wiping them until only clean oil comes out
- ____ 29 Deoxit the tube sockets and coil sockets
- ____ 30 Deoxit the RF band switch
- ____ 31 Give rest of RF deck a bath (hard-core or cosmetic)
- D. Hard Core RF Module Cleaning
- ____ 01 Disassemble the gear train
- ____ O2 When you take the split gears apart, tie them together
- ____ 03 Maintain the orientation that they were originally assembled with
- ____ 04 Except for the counter, toss all of the parts in a coffee can
- ____ 05 Add favorite degreaser and let brew
- ____ 06 Work penetrating oil into the bearings of the camshafts
- ____ 07 Keep lubing and wiping them until only clean oilcomes out
- ____ 08 Now bath the RF deck in soap and water (dishwasher)
- ____ 09 Now bath the gear parts in soap and water (dishwasher)
- ____ 10 Dry the RF deck and gears (all day in the sunlight)
- ____ 11 Use 10W30 Mobil 1 synthetic oil for the RF deck
- ____12 Use Pennzoil wheel bearing grease on the detent
- ____ 13 Use compressed air to work oil into the bearings of the camshafts
- ____ 14 Lubricate each part of gear train prior to assembly
- ____15 Reassemble the gear train
- ____ 16 Use compressed air to work oil into the gears
- ____ 17 Wipe out excess oil
- ____ 18 Conduct mechanical alignment of the gear train
- ____ 19 Deoxit all the tube socket pins
- ____ 20 Deoxit all the connector sockets
- ____ 21 Deoxit all the plug pins
- E. Cosmetic RF Module Cleaning
- ____ 01 Hang gear train over edge of bench
- ____ 02 Rotate the deck any way needed to work out dirt
- ____ 03 Use liberal amounts of cleaner to wash gears
- ____ 04 Use compressed air to push cleaner into parts and dirt out

- ____ 05 Use penetrating oil on first pass
- ____ 06 Use alcohol on second pass
- ____ 07 Use degreaser on third pass
- ____ 08 Use simple soap on fourth pass
- ____ 09 Dry the RF deck and gears (all day in the sunlight)
- ____ 10 Use 10W30 Mobil 1 synthetic oil for the RF deck
- ____11 Use Pennzoil wheel bearing grease on the detent
- ____ 12 Use compressed air to work oil into the bearings of the camshafts
- ____ 13 Use compressed air to work oil into the gears
- ____ 14 Wipe out excess oil
- ____ 15 Conduct mechanical alignment of the gear train
- ____ 16 Deoxit all the tube socket pins
- ____ 17 Deoxit all the connector sockets
- 18 Deoxit all the plug pins
- F. Rebuild Inspection / Visual Inspection
- ____ O1 Spin all of the trimmers caps a couple of turns
- ____ O2 Tighten the screws holding the tube sockets to the chassis
- ____ 03 Check the value of all the resistors
- ____ 04 Check the value of all diodes
- ____ 05 Check the value of all capacitors
- ____ 06 Measure the resistance of all the front panel potentiometers
- ____ 07 Measure the resistance of the IF gain potentiometer
- ____ 08 Measure the resistance of the carrier meter zero potentiometer
- ____ 09 Remove all of the hoods of the chassis connectors to inspect
- _____10 Measure the resistance of EVERY damn wire in the chassis
- ____ 11 Inspect the power cord connections under the coverplate.
- ____ 12 Check the capacitors and resistors inside the IF transformer cans
- ____ 13 Test the dial lamps
- ____ 14 Check the selenium rectifier
- ____ 15 Check the antenna relay and inspected the contacts in the relay
- _____16 Check the main power microswitch
- ____ 17 Check capacitor C-553, which blocks B+ from the mechanical filters
- ____ 18 Check the 2UF AGC capacitor for leaking fluid
- ____ 19 Check C531 cause of audio and limiter function problems
- ____ 20 Check C547 cause of audio and limiter function problems
- ____ 21 Check C549 cause of audio and limiter function problems
- ____ 22 Check C603 capacitor mounted on the AF deck
- ____ 23 Check C606 capacitor mounted on the AF deck
- ____ 24 Check C609 8 ufd electrolytic capacitor mounted in the AF deck
- ____ 25 Check C-327, a 100 pf mica capacitor mounted in the RF deck
- ____ 26 Verify the values of the fuses
- 27 Inspect the fuse holder operation
- ____ 28 Inspect the rear panel antenna and IF output connectors
- <u>29</u> Inspect the terminal board screws and jumpers

____ 30 Check all the tubes with a tube tester for minimum values

G. Reassemble The Receiver

- ____ 01 Inspect the cams for burrs where the rollers ride on, hone if needed
- ____ 02 Inspect the gear clamps for cracks replace as needed
- ____ 03 Inspect the spline bolts in the gear clamps replace as needed
- ____ 04 Inspect the roller retainers on the slug racks these must roll freely
- ____ 05 Inspect slug racks for square true operation fix as needed
- ____ 06 Inspect slug racks for burrs and gouges on the end surfaces and fix
- ____ 07 Replace the RF deck transformer cans
- ____ 08 Replace the slug racks inspect for proper installation of racks
- ____ 09 Install the slug rack springs
- ____ 10 Install the calibration crystal oven
- ____ 11 Inspect the slug rack springs for poor tension, replace as needed
- ____ 12 "Time" the RF deck bandswitch
- ____ 13 "Time" the OSC deck bandswitch
- ____ 14 Install OSC deck subassembly
- ____ 16 Check the alignment and operation of the OSC deckswitch
- ____ 17 In R390 check the Oldham coupler between OSC and RFdecks
- _____18 In R390 check the OSC deck switch "timing"
- ____ 19 Install RF subassembly deck
- ____ 20 In R390 install the calibration subassembly deck
- ____ 21 Install VFO subassembly
- 22 Check the VFO shaft alignment to the KHz shaft adjust as needed
- ____ 23 Check the VFO Oldham coupler spacing
- ____ 24 Install the VFO Oldham coupler spring
- ____ 25 Reinstall the front panel
- ____ 25 Conduct power supply module: visual inspection
- ____ 26 Verify power supply 115 volt switch setting
- _____27 Inspect the solder connections in power supply (diodes added)
- ____ 28 Install the power supply module
- ____ 29 Install the IF module
- ____ 20 Install the audio module
- ____ 31 Lightly lube the set-screws in the knobs, and install the knobs
- ____ 32 Lightly lube the shafts of each front panel switch
- ____ 33 Lightly lube the shafts of each front panel potentiometer
- ____ 34 Lightly lube the shafts IF gain potentiometer
- ____ 35 Lightly lube the shafts carrier meter, adjust potentiometer
- ____ 36 IF deck lightly lube the shaft extension bushings
- ____ 37 Reinstall the knobs
- ____ 38 Check the tightness on all of the screws and clamps
- ____ 39 Install the tubes
- ____ 40 Install selected tube shields
- ____ 41 All the knobs must operate freely
- ____ 42 Knobs must not be loose on shafts

- ____ 43 Verify all connectors are properly seated
- ____ 44 Ensure the wire harness is tucked in on the bottom side
- H. Mechanical Alignment
- ____ O1 Set Oven switch to OFF
- ____ 02 Loosen the dial lock, check the knob and lock operation
- ____ 03 Check the zero adjust knob adjustment operation
- ____ 03 Set the zero adjust to center
- ____ 04 Check the over-run and under-run on the KHz knob (10 turn stop)
- ____ 05 Adjust the KHz counter as needed (greater than 25?963, -972)
- ____ 06 Check the over run and under run on the MHz knob (10 turn stop)
- ____ 07 Adjust the MHz counter as needed
- ____08 Set the R390A to 7+000 Set the R390 to 2.000
- ____ 09 Check the cam alignment starting with the 8-16 MHz cam
- ____10 A If the 8-16 MHz cam needs adjusting, then loosen the following:
- ____ 10 B Release the clamp for 2-4, the slug rack should fall
- ____ 10 C Release the clamp for 4-8, the slug rack should fall
- 10 D Release the clamp for 16-32, the slug rack should fall
- ____ 10 E The 8-16 slug rack should also fall
- ____ 11 Hold the 8-16 and 16-32 cams in place
- ____ 12 Tighten the 16-32 MHz cam clamp
- ____ 13 Hold the 4-8 cam in place
- ____ 14 Tighten the 4-8 MHz cam clamp
- ____ 15 Hold the 2-4 cam in place
- ____ 16 Tighten the 2-4 MHz cam clamp
- ____ 17 Adjust the 1-2 MHz cam if needed
- ____ 18 Adjust the 0.5-1 MHz cam if needed
- ____ 19 Adjust the 1st Variable IF cam if needed
- ____ 20 Adjust the 2nd Variable IF cam if needed
- ____ 21 Adjust the VFO if needed
- I. Knobology Dynamic Testing Monthly Test
- ____ 01 Set the Function Switch to MGC
- ____ 02 Eye-ball the receiver in the dark for blue tube glow
- ____ 03 Eye-ball the dial lights
- ____ 04 Get the head-phones adjusted over the ears
- ____ 05 Set the line meter to 0
- ____ 06 Set the line gain to 10
- ____ 07 Set the ANT trim to 0
- ____ 08 Set the AGC to MED
- ____ 09 Set the LIMITER to OFF
- ____ 10 Set the Bandwidth to 2KHz
- ____ 11 Set the BFO Pitch to O
- ____ 12 Set the BFO OFF
- ____ 13 Set the Break-in OFF

- ____ 14 Set the Audio Response to wide
- ____ 15 Set the Zero Adjust to center and confirm knob is not loose
- ____ 16 Release the Dial Lock and confirm knob is not loose
- ____ 17 Set the Local Audio to max and confirm knob is not loose
- ____ 18 Set the RF to max and confirm knob is not loose
- ____ 19 Run the Local Audio from end to end and confirm knob is not loose
- ____ 20 Listen for pot pop in the headphones
- ____ 21 Confirm Local Audio pot, V603, and V602A are good
- ____ 22 Switch the bandpass filter from wide to sharp to wide
- ____ 23 Confirm bandpass filter knob is not loose
- ____ 24 Listen for switch pop in the headphones
- ____ 25 Listen for narrow audio responce in the headphones
- ____ 26 Confirm Filter, switch, and V601A are good
- ____ 27 Set the LIMITER to ON
- ____ 28 Listen for switch pop in the headphones
- ____ 29 Run the LIMITER pot from end-to-end
- ____ 30 Listen for a change in audio spectrum
- ____ 31 Set the LIMITER to OFF and confirm knob is not loose
- ____ 32 Confirm Limiter switch, and V507 are good
- ____ 33 Set the Function to CAL
- ____ 34 Listen for the Antenna Relay to click between MGC and CAL
- ____ 35 Set the BFO ON and confirm knob is not loose
- ____ 36 Set the Khz to 500Khz
- ____ 37 Vary the BFO pitch and confirm knob is not loose
- ____ 38 Confirm the BFO pitch goes through zero and the knob stops work
- ____ 39 Set the Band Width to 0.1Khz, 1Khz, 2KHz, 4Khz, 8Khz, 16Khz
- _____ 40 Listen for a change in audio spectrum and confirm knob is not loose
- ____ 41 Set the Band Width to 0.1Khz
- ____ 42 Set the BFO Pitch to zero, confirm knob adjustment for zero is good
- ____ 43 Vary the Khz Knob to get a zero BFO through the 0.1KHz
- ____ 44 Confirm V505, V701, V506B, V504, V503, V502, V501 are good
- ____ 45 Set the Band Width to 4Khz
- ____ 46 Set the MHz to 00
- ____ 47 Verify Mhz stop at 00
- ____ 48 Set the Khz to 500Khz and listen for a calibration tone
- ____ 49 Move the Mhz knob up one detent
- ____ 50 Verify detent seats, verify bandswitch changes as needed
- ____ 51 Verify 2nd Crystal Oscillator crystal is within 1KHz on each Mhz
- ____ 52 Move the Mhz knob up one detent
- ____ 53 Verify Mhz stop at 31
- ____ 54 Dial Khz to 000
- ____ 55 Check counter under-run
- ____ 56 Dial Khz to 000 and null cal tone to zero with BFO
- ____ 57 Dial Khz to each 100 KHz and note VFO spread
- ____ 58 Dial Khz to 900 and note that total VFO spread is less than 300 Hz
- ____ 59 Check counter over-run

- ____ 60 Ground break-in and set break in ON
- ____ 61 Confirm audio mutes
- ____ 62 Set break in OFF
- ____ 63 Confirm antenna relay operation in STANDBY and CAL
- ____ 64 Set the Function to AGC
- ____ 65 Set the AGC to SLOW, MED, FAST
- ____ 66 Observe that the carrier meter moves upscale and drops back to zero
- ____ 67 Set the Function to CAL
- ____ 68 Set the BFO ON
- ____ 69 Dial KHz to a cal tone and adjust BFO for a tone
- ____ 70 Set the line gain to max
- ____ 71 Set the line meter switch to 0
- ____ 72 Set the line gain for a meter indication of 0
- ____ 73 Set the line meter switch to +10
- ____ 74 Observe the line meter reads -10
- ____ 75 CARRIER LEVEL meter deflection of at least 40 dB on Cal tone
- ____ 76 Set the Function to AGC
- ____ 77 Tune KILOCYCLE CHANGE control across any band
- ____ 78 Tune KILOCYCLE CHANGE control through several signals
- ____ 79 Output volume should be nearly constant
- ____ 80 Tune KILOCYCLE CHANGE control to one signal
- ____ 81 CARRIER LEVEL meter indicates strength of received signals
- ____ 82 Rotate ANT TRIM control to peak CARRIER LEVEL meter
- ____ 83 Set FUNCTION switch to MGC
- ____ 84 Tune the receiver away from any signal
- ____ 85 CARRIER LEVEL should not indicate (read zero)

J Adjust the IF gain R519

- ____ O1 Set the Line Meter OFF
- ____ 02 Set the Line gain to 0
- ____ 03 Set the ANT Trim to 0
- ____ 04 Set the AGC to MED
- ____ 05 Set the LIMITER to OFF
- ____ 06 Set the Band Width to 2KHz
- ____ 07 Set the BFO Pitch to 0
- ____ 08 Set the Audio Response to WIDE
- ____ 09 Set the Break-in OFF
- ____ 10 Set the Function to MGC
- ____ 11 Set the BFO to OFF
- ____ 12 Release the Zero Adjust
- ____ 13 Release the Dial Lock
- ____ 14 Set the Local Audio to max
- ____ 15 Set the RF to max
- ____ 16 Remove P114 from J514

- ____ 17 Remove P213 from J513
- ____ 18 Remove P218 from J518
- ____ 19 Remove J116 adapter from the back panel if necessary
- ____ 20 Couple P114 to J513
- ____ 21 Couple P116 to J116
- ____ 22 Couple J116 to the signal generator RF output
- ____ 22 Adjust signal generator for 455 KHz output frequency
- ____ 24 Adjust signal generator for 150 micro volt RF output
- ____ 25 Adjust signal generator for 30% audio tonemodulation (400 Hz)
- ____ 26 Meter diode load output for -7 VDC
- ____ 27 Place a 600 ohm load across the local audio output
- ____ 28 Place a 600 ohm load across the line audio output
- ____ 29 Meter local audio output for 450 milliwatts, 27 db, or 17.3 Volts AC
- ____ 30 Adjust the IF gain R519 for -7 VDC on the diode load
- ____ 31 Observe the local audio output level is greater than 400 milliwatts
- ____ 32 Local Audio should be 17.3 Volts AC across 600 ohms 450 mw
- ____ 33 Line Audio should be 2.45 Volts AC across 600 ohms 10mw
- ____ 34 Phone Audio should be 0.78 Volts AC across 600 ohms 1mw
- ____ 35 Line Audio at 0.78 Volts across 600 should be LineMeter Zero VU
- ____ 36 Set the Line Meter to +10
- ____ 37 Set the signal generator modulation on
- ____ 38 The Line Meter should read above 0 VU (10 mw)
- ____ 39 Set the Line Gain off max until the Line Meter reads 0 VU (10 mw)
- ____ 40 Set the signal generator modulation off
- ____ 41 Set the Meter Switch to -10
- ____ 42 Observe 30 db change (20 db on switch plus 10 db on meter scale)
- ____ 43 The Line Meter should read less than -10 VU (SN + N > 30 DB)
- ____ 44 Set the Line Meter to OFF
- ____ 45 Set the Line Gain to 0

K. Alternate Procedure To Set The IF Gain Control

Once the receiver has been fully mechanically and electrically aligned, the final procedure to perform before "buttoning it up" is to set the IF gain control. The manual specification to set the IF Gain control for a level of -? volts on the diode load for 150uv @455kc into J-513 is far too hot. Many otherwise very sensitive R390A's are thought not be hearing weak signals, because these signals are covered by excess noise generated in the IF module. The most common single item responsible for holding a R390A back is not lack of sensitivity. Rather it is internally generated IF deck noise.

- ____ 01 Allow the receiver to warm up for at least 1 hour then:
- ____ 02 Terminate the antenna input (just ground the balanced inputs)
- ____ 03 Set receiver for 15.2 MHz (Selected point of mechanical alignment)
- ____ 04 Set the "FUNCTION" switch to MGC

- ___ 05 Select the 4kc filter with the "BANDWIDTH"
- ____ 06 Set "RF GAIN" control to 10 or maximum
- ____ 07 Peak the "ANTENNA TRIM" for maximum noise
- ____ O8 Use the "LINE LEVEL" meter for peaking noise
- ____ 09 Set "Line Meter" switch to -10db scale
- ____ 10 Set "Line Gain" control to full CW or"10."
- ____ 11 Adjust IF gain control, R-519 to between -4 to -7 VU on Line Meter
- ____ 12 Set the "FUNCTION" switch to AGC
- ____ 13 Re-zero the carrier meter control, R523
- <u>14 Set controls above for normal operation</u>
- ____ 15 Remove antenna short, and reinstall antenna
- ____ 16 Power up the oven, and verify function of the thermostat
- ____ 17 Turn the oven off
- ____ 18 Leave receiver on for at least 14 days to reform caps
- L IF Module Alignment
- ____ 01 Continue with the prior setup
- ____ 02 Adjust signal generator for 455 KHz output frequency
- ____ 03 Adjust signal generator for 150 microvolt RF output
- ____ 04 Adjust signal generator for 30% audio tone modulation (400 Hz)
- ____ 05 Meter diode load output for -7 volts DC
- ____ 06 Place a 600 ohm load across the local audio output
- ____ 07 Meter local audio output for 450 milliwatts, 27 db, or 17.3 VAC
- ____ 08 Set the Band Width to 2 KHz
- ____ 09 Adjust C571 (top trimmer) for max diode load output
- ____ 10 Adjust C513 (bottom trimmer) for max diode load output
- ____ 11 Set the Band Width to 4 KHz
- ____ 12 Adjust C570 (top trimmer) for max diode load output
- ____ 13 Adjust C514 (bottom trimmer) for max diode load output
- ____ 14 Set the Band Width to 8 KHz
- ____ 15 Adjust C568 (top trimmer) for max diode load output
- ____ 16 Adjust C515 (bottom trimmer) for max diode load output
- ____ 17 Set the Band Width to 16 KHz
- ____ 18 Adjust C569 (top trimmer) for max diode load output
- ____ 19 Adjust C516 (bottom trimmer) for max diode load output
- M. To Stagger Or Not To Stagger
- ____ 01 Continue with the prior setup
- ____ 02 Set the Band Width to 16 KHz
- ____ 03 Set the Function to MGC
- ____ 04 Adjust signal generator for 455 KHz output frequency
- ____ 05 Adjust signal generator for 150 microvolts RF output
- ____ 06 Adjust signal generator for 30% audio tone modulation (400 Hz)
- ____ 07 Meter diode load output for -7 volts DC
- ____ 08 Note the position of the top slug in T501
- ____ 09 Adjust the top slug of T501 for maximum output

- ____ 10 Return the top slug in T501 to its original position
- ____ 11 Adjust signal generator for 467 KHz output frequency
- ____ 12 Adjust the top slug of T501 for maximum output
- ____ 13 Note the position of the top slug in T501

____ 14 If the slug was tuned closer to 467 than 455 the module is staggered

- ____ 15 If the module is to be stagger-tuned then use the stagger tune steps
- N. To stagger tune IF
- ____ 01 Adjust signal generator for 467 KHz output frequency
- ____ 02 Adjust the top slug of T501 for maximum output
- ____ 03 Adjust the bottom slug of T502 for maximum output
- ____ 04 Adjust signal generator for 443 KHz output frequency
- ____ 05 Adjust the bottom slug of T501 for maximum output
- ____ 06 Adjust the top slug of T502 for maximum output
- ____ 07 Adjust signal generator for 455 KHz output frequency
- ____ 08 Adjust the bottom slug of T503 for maximum output
- ____ 09 Adjust the top slug of T503 for maximum output
- O. To straight tune IF
- ____ 01 Adjust signal generator for 455 KHz output frequency
- ____ 02 Adjust the top slug of T501 for maximum output
- ____ 03 Adjust the bottom slug of T501 for maximum output
- ____ 04 Adjust the top slug of T502 for maximum output
- ____ 05 Adjust the bottom slug of T502 for maximum output
- ____ 06 Adjust the bottom slug of T503 for maximum output
- ____ 07 Adjust the top slug of T503 for maximum output
- P. Adjust Z503 AGC
- ____ 01 Contiune from part J above
- ____ 02 Set the function switch to AGC
- ____ 03 Meter the AGC voltage for -1 to -2 volts on the AGC jumper
- ____ 04 Adjust the signal generator for an AGC voltage in the meter range
- ____ 05 Adjust Z503 for maximum AGC voltage on the AGC jumper
- ____ 06 Set the function switch to MGC

Q IF And Audio Module Tube Optimizing

Optimizing the vacuum tube lineup in the signal path is another technique to maximize performance. Start with the tubes in the IF strip. These are the 5749W's IF amps, V-501, V-502 and V-503. The 6AK6 4th IFamp V-504 and the detector, V-506, a 5814A. Continue with the audio module tubes. Then do the RF module tubes last. The tubes can be optimized before any alignment is conducted. But the usual procedure is to do a signal alignment, conduct the tube optimization, and then do another complete signal alignment. Normal procedure is to conduct the signal alignment and tube optimization together in module by module stages IF and audio modules, then RF and oscillator modules. Watch the noise level of each tube with the modulation off. The meter should lie quietly. If the meter needle is bouncing, then consider this as additional noise from the tube. It may take several passes in a poor receiver to grade other noisy tubes out of the receiver and reach acceptable levels ofperformance. Use the best tubes on hand and place them in the optimum performance order. New tubes may not be better than existing tubes. When new tubes are received, grade them against all like tubes on hand. Keep track of the spares and their values. If the signal-to-noise ratios are good some meter bounce is expected. If you reach the point where you believe you have good tubes through the receiver and the meter just will not lie quietly, then you have to start looking for leaky caps, poor resistors, bad solder joints, dirty tube sockets, dirty connector pins, or loose or corroded tie lugs.

- ____ O1 Set the Line Meter OFF
- ____ 02 Set the Line gain to 0
- ____ 03 Set the ANT Trim to 0
- ____ 04 Set the AGC to MED
- ____ 05 Set the LIMITER to OFF
- ____ 06 Set the Band Width to 2KHz
- ____ 07 Set the BFO Pitch to 0
- ____ 08 Set the Audio Response to WIDE
- ____ 09 Set the Break-in OFF
- ____ 10 Set the Function Switch to MGC
- ____ 11 Set the BFO to OFF
- ____ 12 Release the Zero Adjust
- ____ 13 Release the Dial Lock
- ____ 14 Set the Local Audio to max
- ____ 15 Set the RF to max
- ____ 16 Remove P114 from J514
- ____ 17 Remove P213 from J513
- ____ 18 Remove P218 from J518
- ____ 19 Remove J116 adapter from the back panel if necessary
- ____ 20 Couple P114 to J513
- ____ 21 Couple P116 to J116
- ____ 22 Couple J116 to the signal generator RF output
- ____ 22 Adjust signal generator for 455 KHz output frequency
- ____ 24 Adjust signal generator for 150 microvolts RF output
- ____ 25 Adjust signal generator for 30% audio tone modulation (400 Hz)
- ____ 26 Meter diode load output for -7 volts DC
- ____ 27 Place a 600 ohm load across the local audio output
- ____ 28 Meter local audio output for 450 milliwatts, 27 db, or 17.3 Volts

AC

- ____ 29 In pass one gather all the spare 5749's
- ____ 30 Pull the BFO and VFO 5759 tubes (V505, V701)
- ____ 31 Pull the AGC IF AMP (V508)

- ____ 32 Remember the goal is best signal-to-noise ratio for each tube
- ____ 33 Set the signal generator modulation on and record the audio output
- ____ 34 Set the signal generator modulation off and record the audio output
- ____ 35 The difference in these two values is the merit of the tube in V501
- ____ 36 Place each spare 5759 into V501 to find a merit value for the tube
- ____ 37 Grade the spare 5749's from worse to best
- ____ 38 Place the worse tube in V503
- ____ 39 Place the second poorest tube in V502
- _____ 40 Start over and re-grade the 5749's in V501 (32, 33,34)
- ____ 41 Select the very best signal-to-noise 5749 for the V701 (VFO)
- ____ 42 Place the second best 5749 in V501
- ____ 43 Place the third best 5749 in V502
- ____ 44 Place the fourth best 5749 in V503
- ____ 45 Place the fifth best 5749 in V505 (BFO)
- _____46 Place the sixth best 5749 in V508 (AGC IF amp)
- ____ 47 In pass two gather all the spare 6AK6's
- ____ 48 Remove V604 Line Audio
- ____ 49 Set the signal generator modulation on and record the audio output
- ____ 50 Set the signal generator modulation off and record the audio output
- ____ 51 The difference in these two values is the merit of the tube in V504
- ____ 52 Place each spare 6AK6 into V504 to find a merit value for the tube
- ____ 53 Place the worst tube in V603 Local Audio
- ____ 54 Start over and re-grade the 6AK6's in V504 (49, 50,51)
- ____ 55 Place the best 6AK6 in V504 (4th IF stage)
- ____ 56 Place the second best 6AK6 in V603 Local Audio
- ____ 57 Place the third best 6AK6 in V604 Line Audio
- ____ 58 In pass three gather all the spare 5814's
- ____ 59 Remove V507, V509, V205, V206
- ____ 60 Set the signal generator modulation on and record the audio output
- ____ 61 Set the signal generator modulation off and record the audio output
- ____ 62 The difference in these two values is the merit of the tube in V601
- ____ 63 Place each spare 5814 into V601 to find a merit value for the tubes
- ____ 64 Place the worst tube in V602
- ____ 65 Place the second worst tube in V506
- ____ 66 Start over and re-grade the 5814's in V601 (60, 61,62)
- ____ 67 Place the best 5814 in V506 Detector
- ____ 68 Place the 2nd best 5814 in V601 1st AF amp and follower
- ____ 69 Place the 3rd best 5814 in V602 local AF amp
- ____ 70 Place the 4th best 5814 in V507 Limiter
- ____ 71 Place the 5th best 5814 in V205 Calibration Oscillator
- ____ 72 Place the 6th best 5814 in V206 100 KC multivibrator
- ____ 73 Place the 7th best 5814 in V509 AGC rectifier
- ____ 74 Adjust signal generator for 455 KHz output frequency
- ____ 75 Adjust signal generator for 150 microvolts RF output
- ____ 76 Adjust signal generator for 30% audio tone modulation (400 Hz)

- __ 77 Meter diode load output for -7 volts DC
- ____ 78 Set the Band Width to 2 KHz
- ____ 79 Adjust the IF gain R519 for -7 V DC on the diode load
- ____ 80 Meter local audio output for 450 milliwatts, 27 db, or 17.3 Volts AC
- ____ 81 Set the signal generator modulation on and record the audio output
- ____ 82 Set the signal generator modulation off and record the audio output
- ____ 83 Meter local audio output for 1 milliwatt, 0 db, or .775 Volts AC
- ____ 84 If the difference must be greater than 27 db. (30 likely)
- ____ 85 Remove all test equipment
- R. Adjust T208, C520, L503, and Zero BFO
- ____ 01 Set the Line Meter OFF
- ____ 02 Set the Line gain to 0
- ____ 03 Set the ANT Trim to 0
- ____ 04 Set the AGC to MED
- ____ 05 Set the LIMITER to OFF
- ____ 06 Set the Band Width to 2KHz
- ____ 07 Set the BFO Pitch to 0
- ____ 08 Set the Audio Response to wide
- ____ 09 Set the Breakin OFF
- ____ 10 Set the Function to MGC
- ____ 11 Set the BFO OFF
- ____ 12 Release the Zero Adjust
- ____ 13 Release the Dial Lock
- ____ 14 Set the Local Audio to max
- ____ 15 Set the RF to max
- ____ 16 Adjust signal generator for 455 KHz output frequency
- ____ 17 Adjust signal generator for 75 microvolts RF output
- ____ 18 Adjust signal generator for 30% audio tone modulation (400 Hz)
- ____ 19 Meter diode load output for -7 volts DC
- ____ 20 Place a 600 ohm load across the local audio output
- ____ 21 Meter local audio output for 450 milliwatts, 27 db, or 17.3 Volts AC
- ____ 22 Connect the signal generator to E211 through a capacitor.
- ____ 23 Adjust signal generator for diode load output of -7 volts DC
- ____ 24 Adjust T208 for peak (this adjustment is broad)
- ____ 25 Adjust signal generator for diode load output of -7 volts DC
- ____ 26 The signal level should be less than 75 microvolts RF output (50)
- ____ 27 The signal with 30% modulation should output 450 milliwatts audio
- ____ 28 Set the signal generator modulation on and record the audio output
- ____ 29 Meter local audio output for 450 milliwatts 27 db, or more
- ____ 30 Set the signal generator modulation off and record the audio output
- ____ 31 Meter local audio output for 1 milliwatt, 0 db, or less

- ___ 32 Set the Band Width to 0.1 KHz
- ____ 33 Rock the signal generator for maximum diode load output
- ____ 34 Adjust signal generator for diode load output of -7 volts DC
- ____ 35 Record the signal generator output level
- ____ 36 The following steps should produce six marks around C520
- ____ 37 Switch the generator output up 60 db (two switchsteps on URM 25)
- ____ 38 Increase the generator frequency until output drops to -7 volts DC
- ____ 39 Adjust C520 for a dip in the diode load voltage
- ____ 40 Mark the can and label this H (5 o'clock)
- ____ 41 Adjust C520 for the other side dip in the diode load voltage
- ____ 42 Mark the can and label this H (7 o'clock)
- ____ 43 Decrease the generator frequency until output drops to -7 volts DC
- ____ 44 Adjust C520 for a dip in the diode load voltage
- ____ 45 Mark the can and label this L (4 o'clock)
- ____ 46 Adjust C520 for the other side dip in the diode load voltage
- _____ 47 Mark the can and label this L (8 o'clock)
- ____ 48 Divide each pair of dips and mark the can C
- ____ 49 Set C520 to the C mark (either 4:30 or 7:30)
- ____ 50 Rock the signal generator (to 455) for maximum diode load output
- ____ 51 Adjust signal generator for diode load output of -7 volts DC
- ____ 52 Set the Band Width to 1 KHz
- ____ 53 Adjust L503 for peak output
- ____ 54 Set the BFO switch ON
- ____ 55 Loosen the clamp on the BFO shaft extension
- ____ 56 Zero the BFO knob
- ____ 57 Zero the BFO against the signal
- ____ 55 Tighen the clamp on the BFO shaft extension
- ____ 56 Set the BFO switch OFF
- ____ 57 Disconnect the generator

S 2nd Crystal Oscillator Alignment

When adjusting the 2nd Crystal Oscillator you can hear the noise peak better than you can measure it with the meter. Peak the caps up with both the meter and headphones.

- ____ 01 Meter the local audio output across a 600 Ohm load
- ____ 02 Meter the diode load for -7 volts DC
- ____ 03 Use a good set of headphones to monitor the audio output
- ____ 04 Set the function switch to CAL
- ____ 05 Set the BFO OFF
- ____ 06 Set the KHz to 500
- ____ 07 Set the KHz to 31
- ____ 08 Set the Bandwidth to 2 KHz
- ____ 09 Rock the KHz to produce maximum indication on the diode load
- ____ 10 Set the Local Output meter range to provide a midscale reading
- ____ 11 Use the headphones to hear the noise peak as you make

adjustments

____ 12 Screw the slug of T4O1 out until only one peak can be obtained while turning trimmer capacitor 31 through its entire range.

- ____13 Set trimmer capacitor slightly away from peak
- _____14 Adjust the slug in T401 for peak output
- ____ 15 Readjust capacitor 31 and ensure it has two peaks.
- ____ 16 Adjust capacitor 31 to peak (watch the meters for best indication)
- ____ 17 Move the MHz down one detent (you can hear the noise peak)
- ____ 18 Adjust the corresponding capacitor to peak
- ____ 19 Stop at 8MHz
- T 1st Crystal Oscillator Alignment
- ____ O1 Meter the local audio output across a 600 Ohm load
- ____ 02 Meter the diode load for -'7 volts DC
- ____ 03 Use a good set of headphones to monitor the audio output
- ____ 04 Set the function switch to CAL
- ____ 05 Set the BFO OFF
- ____ 06 Set the KHz to 500
- ____ 07 Set the MHz to 7
- ____ 08 Set the Bandwidth to 2 KHz
- ____ 09 Rock the KHz to produce maximum indication on the diode load
- ____ 10 Adjust the slug in T207 for peak output
- U VFO Band Spread Test
- ____ 01 Set the Line Meter OFF
- ____ 02 Set the Line gain to 0
- ____ 03 Set the ANT Trim to 0
- ____ 04 Set the AGC to MED
- ____ 05 Set the LIMITER to OFF
- ____ 06 Set the Band Width to 2KHz
- ____ 07 Set the BFO Pitch to 0
- ____ 08 Set the Audio Response to wide
- ____ 09 Set the Breakin to OFF
- ____ 10 Set the Function to CAL
- ____ 11 Set the BFO to ON
- ____ 12 Set the Zero Adjust to center
- ____ 13 Release the Dial Lock
- ____ 14 Set the Local Audio to max
- ____ 15 Set the RF to max
- ____ 16 Set the KHz knob to -000
- ____ 17 Adjust the BFO Pitch to zero beat
- ____ 18 Set the KHz knob to +000
- ____ 19 Rock the KHz knob to zero beat
- ____ 20 The VFO band spread should be less than 300 Hertz

V VFO Band Spread Adjustment

- ____ 01 If needed continue from the preceding section
- ____ 02 Set the FUNCTION switch to CAL
- ____ 03 Set the MHz to 9 MHz
- ____ 04 Set the Zero Adjust to center
- ____ 05 Set the KHz knob to 000
- ____ 06 Remove the Oldham coupler spring
- ____ 07 Remove the VFO from the receive
- ____ 08 Remove the end point adjustment cap screw
- ____ 09 Attach the output cable and harness cable
- ____ 10 Adjust the VFO shaft for a zero beat
- ____11 Mark the coupler and VFO face (9,000 3,455)
- ____ 12 Set the KHz knob for 9, +000 (9, +000 2,455)
- ____ 13 Dial 10 turns on the VFO shaft and align the marks
- ____ 14 If the span is not exact make a small adjustment to the end point
- ____ 15 Do not over adjust the end point to a complete zerobeat
- ____ 16 Observe the pitch is closer to zero beat
- _____17 Back off the 10 turns on the VFO shaft (only work one way)
- ____ 18 Set the KHz knob to 000
- ____ 19 Adjust the VFO shaft for a zero beat
- ____ 20 Mark the coupler and VFO face (9,000 3,455)
- ____ 21 Set the KHz knob for 9, +000 (9,+000 2,455)
- ____ 22 Dial 10 turns on the VFO shaft and align the marks
- ____ 23 If the span is not exact make a small adjustment to the end point
- ____ 24 Do not over adjust the end point to a complete zerobeat
- ____ 25 Observe the pitch is closer to zero beat
- ____ 26 Repeat steps 17, 18, 19, 20, 21,22, 23, 24 and 25 until span is exact
- ____ 27 Make a small adjustment to the end point (CW longer CCW shorter)
- ____ 28 Do not over adjust the end point to a complete zerobeat
- ____ 29 Replace the end point cover screw
- ____ 30 Return the VFO shaft to its original location
- ____ 31 Reinstall the VFO into the receiver
- ____ 32 Carefully verify the 10 turn operation of the VFO
- ____ 33 Adjust the mechanical position of module for best shaft alignment
- ____ 34 Adjust the Oldham coupler for a free spacing of shafts
- ____ 35 Replace the Oldham coupler spring
- ____ 36 Attach an antenna to the balanced input
- ____ 37 Tune WWV at 20MHz, 15Mhz, 10MHz or 5Mhz
- ____ 38 Set the BFO to OFF
- ____ 39 Set the bandwidth to 0.1Khz
- _____ 40 Set the KHz to 000
- _____41 Loosen the front KHz shaft clamp on the Oldham coupler
- ____ 42 Rock the VFO to peak WWV through the crystal filter
- ____ 43 Tighten the front KHz shaft clamp on the Oldham coupler
- ____ 44 Set the BFO to ON

- ____ 45 Set the BFO Pitch to O
- ____ 46 Loosen the extension shaft clamp on the BFO
- ____ 47 Adjust the BFO shaft to zero the BFO Pitch
- ____ 48 Tighten the extension shaft clamp on the BFO
- ____ 49 Set the FUNCTION Switch to CAL
- ____ 50 Adjust the CAL Adjust Trim to zero the Calibration Oscillator

W. RF Alignment

- ____ 01 Install a 600 ohm resistor on the line level output.
- ____ O2 Place a meter and 600 ohm load on the Local Audio output TS 585
- ____ 03 Connect the generator to the receiver's balanced antenna input
- ____ 04 Place a DC meter on the diode load
- ____ 05 Turn the receiver on and allow it to warm up for 1 hour
- ____ 06 Turn the signal generator on and allow it to warm up for 1 hour
- ____ 07 Set the R390 or R390A Function switch to "MGC
- ____ 08 Set the R390 or R390A Bandwidth to 2kc
- ____ 09 Set the R390 or R390A RF gain full CW (clock-wise)
- ____ 10 Set the R390 or R390A AF line gain full CW
- ____ 11 Set the Line Meter range switch to + 10
- ____ 12 Set the R390 or R390A AF local gain full CW
- ____ 13 Set the R390 or R390A BFO off
- ____ 14 Set the Audio response to wide
- ____ 15 Set the Limiter to off
- ____ 16 Set the receiver and generator to the same frequency of choice
- ____ 17 Rock the generator for a peak into the band pass
- ____ 18 Set the initial generator output to 10uv
- ____ 19 Set the generator modulation level to at 30% 400 Hz or 1 KHz
- ____ 20 Use the Ant Trim to peak the receiver
- ____ 21 Reduce the signal generator RF output for -7 volts DC
- ____ 22 Use 550 for L213, L224-1, L224-2 Slugs 1stOctave
- ____ 23 Use 950 for C201-B, C230-1, C230-2 Caps 1stOctave
- ____ 24 Use 1,100 for L215-1, L215-2, L215-3 Slugs 2ndOctave
- ____ 25 Use 1,100 for C291-1, C291-2, C291-3 Caps 2ndVariable IF
- ____ 26 Use 1,250 for L232-1, L232-2, L232-3 Slugs 1stVariable IF
- ____ 27 Use 1,900 for L233-1, L233-2, L233-3 Slugs 2ndVariable IF
- ____ 28 Use 1,900 for C205-B, C233-1, C233-2 Caps 2ndOctave
- ____ 29 Use 2,250 for L217, L226-1, L226-3 Slugs 3rdOctave
- _____ 30 Use 3,800 for C209B, C236-1, C26-2 Caps 3rdOctave
- ____ 31 Use 4,400 for L219, L227-1, L227-2 Slugs 4thOctave
- ____ 32 Use 7,250 for C283-1, C283-2, C283-3 Caps 1stVariable IF
- ____ 33 Use 7,600 for C213B, C239-1, C239-2 Caps 4thOctave
- ____ 34 Use 8,800 for L221, L227-1, L227-2 Slugs 5thOctave
- ____ 35 Use 15,200 for C217B, C242-1, C242-2 Caps 5thOctave
- ____ 36 Use 17,600 for L223, L229-1, L229-2 Slugs 6thOctave

- ____ 37 Use 30,400 for C221B, C241-1, C241-2 Caps 6thOctave
- ____ 38 Observe 27 DB (17 Volts AC) on the Local Audio
- ____ 39 This should also be 450 milliwatts on the Local Audio
- ____ 40 Observe + 10 on the Line Meter (0 VU + 10 switch)
- ____ 41 Set the signal generator to CW
- ____ 42 The meter on the Local Level should drop 20 DB
- ____ 43 The Line Meter should drop 20 DB
- ____ 44 The signal generator RF level should be less than 3 microvolts
- ____ 45 Record the frequency and the output of the generator in microvolts
- ____ 46 This value is the 20 DB S/N + N receiver level at this frequency
- _____ 47 This is the relative receiver noise floor level at this frequency
- ____ 48 Use the following check the mechanical filters at one frequency
- ____ 49 Set BANDWIDTH KC switch S501 to position 1.
- ____ 50 Adjust the signal generator output for -5 volts on the diode load
- ____ 51 Tune the KILOCYCLE CHANGE to one side of the center frequency until the multi-meter reads 2.5 volts.
- ____ 52 Note the frequency indicated on the receiver frequency counter.
- 53 Tune the receiver KILOCYCLE CHANGE control to the other side
- of the center frequency until the meter reads 2.5 volts.
- ____ 54 Note the frequency indicated on the receiver frequency counter
- ____ 55 Subtract the lower from the higher of the two values
- ____ 56 This is the receiver bandwidth for 1 Kilohertz bandwidth 0.8 to 1.3
- ____ 57 Set BANDWIDTH KC switch S501 to 2 KHz position
- ____ 58 Repeat steps 50 through 55 for the 2 KHz bandwidth 1.9 to 2.3
- ____ 59 Set BANDWIDTH KC switch S501 to 4 KHz position
- ____ 60 Repeat steps 50 through 55 for the 4 KHz bandwidth 3.6 to 4.4
- ____ 61 Set BANDWIDTH KC switch S501 to 8 KHz position
- ____ 62 Repeat steps 50 through 55 for the 8 KHz bandwidth 7.5 or more
- ____ 63 Set BANDWIDTH KC switch S501 to 16 KHz position
- ____ 64 Repeat steps 50 through 55 for the 16 KHz bandwidth 12 or more
- ____ 65 No bandwidth test is required for 0.1 KC setting.

X RF Deck Tube Optimization

In the RF deck we want to check the 6DC6 1st RF, 6C4's mixers, and 5654's crystal oscillators. Use a frequency above 8 MHz to take the third conversion out of the process.

- ____ 01 Install a 600 ohm resistor on the line level output.
- ____ O2 Place a meter and 600 ohm load on the Local Audio output TS 585
- ____ 03 Connect the generator to the receiver's balanced antenna input
- ____ 04 Place a DC meter on the diode load
- ____ 05 Turn the receiver on and allow it to warm up for 1 hour

- ____ 06 Turn the signal generator on and allow it to warm upfor 1 hour
- ____ 07 Set the R390 or R390A Function switch to "MGC
- ____ 08 Set the R390 or R390A Bandwidth to 2kc
- ____ 09 Set the R390 or R390A RF gain full CW (clockw ise)
- ____ 10 Set the R390 or R390A AF line gain full CW
- ____ 11 Set the Line Meter range switch to + 10
- ____ 12 Set the R390 or R390A AF local gain full CW
- ____ 13 Set the R390 or R390A BFO off
- ____ 14 Set the Audio response to wide
- ____ 15 Set the Limiter to off
- ____ 16 Set the receiver and generator to the same frequency of choice
- ____ 17 Rock the generator for a peak in to the band pass
- ____ 18 Set the initial generator output to 10uv
- ____ 19 Set the generator modulation level to at 30% 400 Hz or 1 KHz
- ____ 20 Use the Ant Trim to peak the receiver
- ____ 21 Reduce the signal generator RF output for -7 volts DC
- ____ 22 Observe the power level on the Local Audio meter.
- ____ 23 Set the generator to CW
- ____ 24 Observe the power level on the Local Audio meter
- ____ 25 You expect a 20 DB drop in output on the Local Audiometer
- ____ 26 Swap all your 6DC6 tubes into the 1st RF.
- ____ 27 Measure the relative difference of each tube (step 20-25)
- ____ 28 Select the 6DC6 with the largest difference of signal to noise
- ____ 29 This tube may not be the one with the largest gain
- ____ 30 Swap all your 6C4 tubes into V203 2ndMixer
- ____ 31 Measure the relative difference of each tube (step 20-25)
- ____ 32 Select the 6C4 with the largest difference of signal to noise
- ____ 33 Place the best 6C4 in the 1st Mixer
- ____ 34 Place the best 6C4 in the 2nd Mixer
- ____ 35 Place the best 6C4 in the 3rd Mixer
- ____ 36 Swap all your 5654 6AK5 tubes into V401 2nd Crystal Oscillator
- ____ 37 Measure the relative difference of each tube (step 20-25)
- ____ 38 Place the best 5654 in the 1st CrystalOscillator
- ____ 39 Place the best 5654 in the 2nd CrystalOscillator
- ____ 40 Grade all the spare tubes for future use

Older used tubes will often have a better signal to noise span than new tubes. So someday you have to put the new tubes into the receiver and start aging them so they can get quiet. A new 6CD6 is what it is. You are stuck with it as the best you have. You can put new 5654's 2ndCrystal Oscillator and 6C4's into the 3rd mixer. It gets them futher down the amplifier chain and thus their higher noise level is masked by other stages. You may know a tube is not as good as another tube, but when used in the later stages you may not be able to measure the difference of the tubes when swapping them into the later stages.

Y. Receiver Sensitivity Test

There may be an occasion when its appropriate to measure and record receiver sensitivity in real terms using an accepted standard. For radio receivers, real term sensitivity is expressed as the value of a modulated RF voltage applied to the antenna input necessary to provide a 10db S/N + N figure. This means, what input voltage is required to raise audio output 10 db over the receiver noise floor. Some prefer to do the test with a bandwidth of 2 Khz. Others prefer to do the test at 4 or 8 Khz. If you are comparing the R390 to another receiver you would like to use the same band width. At 2 Khz you expect the receiver to have a 20db S/N + N figure. This test is preferred as a minimum signal test. How small of a signal on the antenna can still be copied? An alternative test is for a fixed signal level, how far is it above the noise floor. We see this in the IF deck where we expect 150 microvolts to provide 30 DB of signal above the noise floor. In the RF deck or end to end test we expect 3 microvolts to provide 20 DB of signal above the noise floor. Measuring the receiver sensitivity in the R390A is an easy, straight forward procedure. The receiver Line Level meter can even be used to help with the measurement.

Here is the procedure for sensitivity:

- ____ 01 Turn the receiver and allow it to warm up for 1 hour
- ____ 02 Turn the signal generator and allow it to warm up for 1 hour
- ____ 03 Set the receiver and generator to the same frequency of choice
- ____ 04 Adjust the Kilocycle Change to peak the generator in he band pass
- ____ 05 Set the initial generator output to luv
- ____ 06 Set the initial generator modulation level to 400 Hz or 1kc at 30%
- ____ 07 Set the R390 or R390A Function switch to "MGC
- ____ 08 Set the R390 or R390A Bandwidth to 4kc
- ____ 09 Set the R390 or R390A RF gain full CW (clockwise)
- ____ 10 Set the R390 or R390A AF line gain full CW
- ____ 11 Set the R390 or R390A AF local gain full CW
- ____ 12 Set the R390 or R390A BFO off
- ____ 13 Disconnect the signal generator from the receiver
- ____ 14 Set the Line Meter range switch to -10
- ____ 15 Adjust the Line Gain for a -10db indication on the Line Level meter
- ____ 16 Use the Ant Trim to peak the receiver noise alone
- _____16 Readjust the Line Gain for a -10db on the Line Level meter
- ____ 17 This is the relative receiver noise floor level
- ____ 18 Connect the generator to the receiver's balanced antenna input
- ____ 19 Reduce the RF output level of the generator.
- ____ 20 For a R390 Line Level meter value of 0
- ____ 21 Record the frequency and the output of the generator in microvolts
- ____ 22 This value is the 10db S/N + N receiver sensitivity at this frequency

- 23 It should be less than .5uv
- ____ 24 The official specifications of the receiver call for 3 microvolts
- ____ 25 Work alone the range of the VFO and conduct this test at each MHz
- ____ 26 .900, 1,900, 2,800, 3,700, 4,600, 5,500, 6,400, 7,300
- ____ 27 8,200, 9,100, 10,000
- ____ 28 To get a value for each Mhz crystal and the range of the VFO.
- ____ 29 Check the SN + N at the alignment points
- ____ 30 550, 950, 1,100, 1,250, 1,900, 2,200, 3,800, 4,400,
- ____ 31 7,250, 7,600, 8,800, 15,200, 17,600 30,400

Z. Receiver Signal to Noise Test

- ____ 01 Install a 600 ohm resistor on the line level output.
- ____ O2 Turn the receiver on and allow it to warm up for 1 hour
- ____ 03 Turn the signal generator on and allow it to warm up for 1 hour
- ____ 04 Set the R390 or R390A Function switch to "MGC
- ____ 05 Set the R390 or R390A Bandwidth to 2kc
- ____ 06 Set the R390 or R390A RF gain full CW (clockwise)
- ____ 07 Set the R390 or R390A AF line gain full CW
- ____ 08 Set the R390 or R390A AF local gain full CW
- ____ 09 Set the R390 or R390A BFO off
- ____ 10 Connect the generator to the receiver's balanced antenna input
- ____ 11 Place a meter and 600 ohm load on the Local Audio output.
- ____ 12 Set the receiver and generator to the same frequency of choice
- ____ 13 Use the RF deck alignment point frequencies
- ____ 14 Conduct the test while performing RF deck alignments
- ____ 15 Use 550, 950, 1,100, 1,200, 1,900, 2,250, 3,800, 4,400,
- ____ 16 Use 7,250, 7,600, 8,800, 15,200, 17,600 30,400
- ____ 17 Rock the generator for a peak in to the band pass
- ____ 18 Set the initial generator output to 10uv
- ____ 19 Set the generator modulation level to at 30% 400 Hz or 1 KHz
- ____ 20 Use the Ant Trim to peak the receiver
- ____ 21 Set the Line Meter range switch to + 10
- ____ 22 Reduce the RF output level of the generator to 0 VU
- ____ 23 This should also be 450 milliwatts on the Local Audio
- ____ 24 This value is the 20 DB S/N + N receiver level at this frequency
- ____ 25 Set the signal generator to CW
- ____ 26 The Meter on the Local Level should drop 20 DB
- ____ 27 The Line Meter should drop to under 20 DB
- ____ 28 This is the relative receiver noise floor level at this frequency
- ____ 29 The signal generator RF level should be less than 3 microvolts
- ____ 30 The official specifications of the receiver calls for 3 microvolts
- ____ 31 Record the frequency and the output of the generator in microvolts
